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Abstract 
 

The present review summarizes current knowledge on the 

alterations of molecular genetics and epigenetics of sporadic 

thyroid follicular cell neoplasms and the relationship of the 

alterations with multistep carcinogenesis theory. Approximately 

50% of follicular thyroid carcinomas have mutations in RAS family 

genes or PAX8/PPARγ gene rearrangements. These mutations are 

found in a mutually exclusive manner, which suggests that 

follicular thyroid carcinomas develop via two different initiating 

mechanisms. BRAF gene mutations and RET/PTC and NTRK1 

rearrangements that involve the mitogen-activated protein kinase 

pathway are found in the majority of papillary thyroid carcinoma. 

These mutations are also found in a mutually exclusive manner and 

contribute to the initiation of the transformation from normal 

follicular cells to papillary thyroid carcinoma. TP53 mutations are 

almost exclusively found in poorly differentiated carcinoma and 

undifferentiated carcinoma and play an essential role in tumor 

progression. Aberrant methylation of oncogenes and suppressor 

oncogenes such as the PTEN gene also causes tumor progression. 

Growth factors (FGF, FGFR, MET, EGFR and VGEF), cell cycle 

regulators (cyclin D1, RB, p16, p21 and p27) and adhesion 

molecules (E-cadherin and fibronectin) activate the mitogenic 

signaling pathways and have impacts on the initiation, promotion 

and progression of thyroid carcinomas.  
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carcinogenesis  

 

 

Introduction 
 

Two theories have been proposed regarding the thyroid 

follicular cell carcinogenesis: the fetal cell carcinogenesis theory 

proposed by Takano T and the more common multistep 

carcinogenesis theory by Vogelstein B et al. (1-6). As predisposing 

conditions for thyroid follicular cell carcinomas, various risk 

factors including nutritional (iodine intake), environmental 

(radiation exposure) and genetic (inherited tumor syndromes and 

familial non-medullary thyroid carcinoma) backgrounds have been 

reported. According to the multistep carcinogenesis theory, 

carcinogenesis is a sequential process involving alterations of 
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multiple genes and epigenetics (4-6). The number of genes and the 

number of corresponding lesions have not been fully elucidated in 

thyroid follicular cell carcinogenesis, while as many as 10 or more 

sequential alterations have been shown to occur in colorectal 

carcinoma, in accordance with the multistep carcinogenesis theory 

(7-16). Analysis of thyroid carcinomas has disclosed accumulation 

of the changes of growth factors, cell cycle regulators and adhesion 

molecules, which activate mitogenic signaling pathways, in 

addition to genetic and epigenetic alterations of multiple genes. 

The present review summarizes current knowledge on the 

alterations of molecular genetics and epigenetics of sporadic (non-

hereditary) thyroid follicular cell neoplasms. 

 

Table 1: Hereditary (familial) thyroid carcinomas 

 

C Cell Origin 

A) Syndromic types  

  Multiple endocrine neoplasia type 2 (MEN 2a/2b) (RET 

gene) 

B) Non-syndromic types 

   Familial Medullary Thyroid Carcinoma (RET gene)  

Follicular Cell Origin 

A) Syndromic types 

1. Familial adenomatous polyposis (FAP) (APC gene) 

2. Cowden syndrome (PTEN hamartoma tumor 

syndrome) (PTEN gene) 

3. Multiple endocrine neoplasia type 1 (MEN 1) (MEN1 

gene) 

4. Carney complex (PRKAR1A gene) 

5. Werner syndrome (WRN gene) 

6. Li-Fraumeni syndrome (TP53 gene) 

B) Non-syndromic types  

Familial non-medullary thyroid carcinoma 

1. Familial papillary thyroid carcinoma (PTC) with 

papillary renal cell neoplasia (1q21)  

2. Familial PTC with oxyphilia (19p13.2)  

3. Familial PTC without oxyphilia (19p13.2)  

4. Familial multinodular goiter with PTC (14q)  

5. Familial PTC (2q21) 

 

 

1. Hereditary Thyroid Carcinomas 
 

Hereditary (familial) thyroid carcinoma can arise from both 

follicular cells and C cells of thyroid (Table 1). The majority of 

mailto:m-kakudo@tiara.ocn.ne.jp


Kakudo M et al. Molecular genetics of thyroid tumors, JBCM 2015, 4(1):13-21 
 
 

- 14 - 

 

thyroid carcinomas of follicular cell origin are non-hereditary 

(sporadic), however a 3% to 10% risk of well-differentiated 

thyroid carcinoma (WDC) has been documented in first-degree 

relatives of patients with WDC (17-22). WDC can be a minor 

component of several known hereditary tumor syndromes, such as 

Cowden syndrome (PTEN gene), familial adenomatous polyposis 

(APC gene), Carney complex (PRKAR1α gene) and Werner 

syndrome (WRN gene) (7, 13, 19, 21, 22). Inactivation of the 

PTEN gene through methylation has recently been found to be a 

common molecular event in follicular neoplasms (23-27). 

However, these responsible gene mutations are rare in sporadic 

PTC and follicular thyroid carcinoma (FTC) (28). In addition to 

those hereditary cancer syndromes, several susceptible gene loci 

have been identified in familial non-medullary thyroid carcinomas 

of non-syndromic type. Chromosomal locations identified in 

patients with familial thyroid carcinomas are 1q21, 2q21, 14q, and 

19p13.2 (Table 1) (19, 21).  However, majority of the sporadic 

thyroid carcinomas do not harbor allelic losses and DNA copy 

number changes at these loci (29-35).   

 

2. Genetic Alterations in Sporadic Thyroid Neoplasms 
 

PTC and FTC are WDC of follicular cell origin and constitute 

more than 90% of all types of thyroid malignancy. Although they 

are derived from the same follicular cells, they have different 

morphological features, biological behaviors and genetic 

alterations (7-14, 21, 33, 36). Four different gene mutations have 

been identified in PTC and FTC, including BRAF and RAS point 

mutations, and RET/PTC and PAX8/PPARγ rearrangements. 

Poorly differentiated carcinoma (PDC) and undifferentiated 

carcinoma (UC) may occur either de novo or as a progression from 

WDC, and the minor components of PTC or FTC in PDC and UC 

are accepted as evidence of progression from WDC to PDC or UC 

(7, 11, 12, 16, 21, 37). Overexpression of cyclin D1, decreased 

expression of p27, and inactivation of PTEN, CTNNB1 (β-catenin) 

and TP53 genes have been reported to be responsible for the 

progression from WDC to PDC or UC (8, 11, 16, 24, 37-45) (Fig. 

1). 

 

a. Molecular Genetics of Follicular Neoplasms (Follicular 

Tumors) 

Follicular neoplasms are a group of thyroid tumors that 

display a follicular growth pattern, and include follicular adenoma 

(FA), FTC and follicular variant of PTC. Gain-of-function 

mutations of RAS genes (NRAS, KRAS and HRAS) have been 

reported in all types of follicular neoplasm at various frequencies 

(46-55). Their prevalence is higher in FTC than in PTC, and in 

FTC than in FA (Table 2) (46-55).  Some investigators concluded 

that RAS mutations may be important genetic alterations in the 

initiation of thyroid follicular cell carcinogenesis because these 

mutations are present in all types of follicular neoplasm including 

FA, FTC, PDC and UC (47), while others concluded that N-RAS 

codon 61 mutation in FTC causes tumor progression and could be 

an important predictive factor for distant metastasis and a higher 

risk of anaplastic transformation (49, 50, 52, 54, 55). The 

peroxisome proliferator-activated receptor-gamma (PPARγ) is a 

transcription factor essential for thyroid gland development, and 

the paired-box gene 8 (PAX8) is a member of the steroid/thyroid 

nuclear receptor family, and their fusion gene (PAX8/PPARγ 

rearrangement) has been found in FA and FTC, but not in PTC, 

PDC and UC (9, 56-58) (Table 2). The two most common 

mutations in FTCs, PAX8/PPARγ rearrangements and RAS point 

mutations, are seen in a mutually exclusive manner, which 

indicates that FTC could be initiated by two different mechanisms: 

either RAS point mutations or PAX8/PPARγ rearrangements (9, 

51). 

 

b. Molecular Genetics of Papillary Thyroid Carcinoma 

PTC is the most common histological type of thyroid 

malignancy globally and accounts for approximately 88% of all 

thyroid carcinomas in Japan (21, 36, 59). The most common 

genetic alterations such as in BRAF and RAS genes found in PTC 

are gain-of-function mutations that activate the mitogen-activated 

protein kinase (MAPK) pathway, which is responsible for thyroid 

tumorigenesis. The hotspot mutation, BRAF(V600E), is frequently 

detected in PTC (36-69%), in contrast to its absence in follicular 

neoplasms (benign FAs and malignant FTCs) (60-66) (Table 2). 

BRAF(V600E) mutation has been reported to be highly prevalent in 

PTC with a papillary and mixed papillary and follicular growth 

pattern, and BRAF(K601E) mutation is restricted to the follicular 

variant of PTC, suggesting possible genotype-phenotype 

correlations (62, 67). High frequency of BRAF(V600E) mutation 

has been reported in PTCs from early to late advanced stages and 

Ugolini et al. reported that BRAF(V600E) mutation was found in 

17.6% of incidentally identified micro-PTCs and 38.3% of 

clinically identified micro-PTCs, indicating that this mutation is an 

early event in PTC tumorigenesis (14, 68-71). While BRAF 

mutations are found in up to 13% of PDC and 35% of UC, it is 

concluded that BRAF mutation-positive PTC may be more prone to 

PDC or UC transformation than PTC without BRAF mutation (66, 

67-74). As BRAF mutation is highly prevalent (95%) in metastatic 

tumors from radioactive iodine-refractory PTC, these studies 

concluded that this mutation has prognostic implications (69, 71-

75). However, conflicting data have been reported by some other 

investigators and BRAF(V600E) mutation has been suggested as a 

secondary subclonal change rather than a primary event in thyroid 

carcinogenesis (76-78).  

Table 2: Genetic alterations in thyroid neoplasms and Ki-67 proliferation index* 

 

FA: Follicular adenoma; PTC: Papillary thyroid carcinoma; FTC: Follicular thyroid carcinoma; PDC: Poorly differentiated carcinoma;  

UC: Undifferentiated carcinoma; *modified from Kondo T et al., Nikiforov Y et al., Soares P et al., Omur O et al., Freitas BC et al. and Kakudo K et al. 
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The RET proto-oncogene is located on chromosome 10q11.2 

and encodes a cell membrane receptor tyrosine kinase. RET/PTC 

rearrangements are reported in sporadic PTC and postulated to be 

important genetic alterations in thyroid tumorigenesis (79-84).  

More than 10 RET/PTC chimeric rearrangements have been 

described in sporadic PTC (7, 10, 13, 16, 84). The reported 

frequency in PTC is widely distributed from 10% to 40% in adult 

patients (7-16, 84). A higher frequency (60%-70%) of RET 

rearrangements, particularly RET/PTC3, has been reported in 

pediatric patients with radiation history (84). A relatively high 

incidence of RET/PTC rearrangements has also been reported in 

early-stage small PTCs. These findings suggest that this genetic 

alteration occurs as an early event in PTC tumorigenesis (82, 83). 

The absence of RET/PTC rearrangements in most PDC and UC 

also suggests that RET/PTC rearrangements have a minor role in 

tumor progression, which means a lower risk of anaplastic 

transformation in PTC with RET/PTC rearrangements (7, 17, 65, 

67, 68).  

RET/PTC rearrangement, and RAS and BRAF mutations 

collectively account for 60%-70% of PTC and appear to be 

mutually exclusive. Kimura et al. emphasized the pivotal role of 

this kinase cascade in PTC development (65). However, Nakazawa 

et al. suggested that the RET/PTC rearrangement in PTC is not a 

driver mutation because the PET/PTC signal was found in only a 

minor population of tumor cells using in situ hybridization on 

cytological smear samples (86). Furthermore, RET/PTC 

rearrangement was found in benign thyroid nodule and their exact 

roles in thyroid carcinogenesis become unclear (87-89). 

TRK rearrangements involve another receptor tyrosine kinase 

gene, NTRK1 (1q22), and these rearrangements have been reported 

in up to 10%-15% of PTCs (90-93). Musholt et al. reported 12.6% 

of TRK rearrangements in 199 PTCs and the PTC with TRK 

rearrangement is associated with a higher (60%) local recurrence 

and a higher (27%) tumor-related mortality rate than in the PTC 

without TRK rearrangements (93). 

 

c. Molecular Genetics of Poorly Differentiated Carcinoma and 

Undifferentiated Carcinoma  
UC is a rare and highly aggressive thyroid carcinoma, with a 

mean survival of less than 6 months after diagnosis and PDC is an 

aggressive thyroid carcinoma with its morphological and 

behavioral features between WDC and UC, and often shows 

anaplastic transformation (7, 8, 11, 12, 16, 21, 36, 44, 94, 95). In 

the multistep carcinogenesis theory, UC is postulated to be derived 

from preexisting low-grade WDCs through the gain of additional 

mutations, such as loss of TP53 and further loss of tumor 

suppressors (7, 8, 11, 12, 16, 21, 36, 44, 68, 94-97). Soares et al. 

screened for and found BRAF mutations in 6/17 (35%) cases of UC 

and 1/3 UC-derived cell line, but none in insular-type PDC (68). 

They concluded that UC may progress from BRAF(V600E) 

mutated PTC and insular-type PDCs are more closely related to 

FTC than PTC (11, 68). There are many studies analyzing the 

genetic alterations and molecular profiles of UC, the end step in 

the thyroid multistep carcinogenesis; many of them conclude that 

BRAF-mutated UCs are often associated with BRAF-mutated PTC 

as a precursor lesion and progression from PTC to UC could be 

favored by further TP53 mutation and SOX2 expression, entering 

the final stage of progression of UC (7, 11-16, 41, 66, 69, 96). The 

TP53 tumor suppressor gene is located on chromosome 17p13 and 

encodes a nuclear transcription factor related to the cell cycle, 

DNA repair and apoptosis. TP53 point mutations are almost 

exclusively found in PDC and UC (17%-38% of PDC and 60%-

88% of UC) and are regarded as a late event in the multistep 

carcinogenesis theory in contrast to that they are observed in the 

early phase of colorectal carcinogenesis (Table 2) (4-6, 11-13, 16, 

37-45). Its deadly biological behavior and high proliferation rate 

(Ki-67 labeling index more than 30%), as well as genetic 

instability and marked aneuploidy, are attributed to accumulation 

of these genetic and epigenetic alterations (7, 98-100). 

β-catenin is a cytoplasmic protein encoded by the CTNNB1 

gene located on chromosome 3p22-3p21.3. Point mutations in the 

CTNNB1 gene have been reported in 25% of PDC and 66% of UC 

(Table 2), but none in WDCs (PTC and FTC) (103). Constitutive 

activation of the Wnt-signaling pathway by mutated β-catenin may 

play an important role in the progression from WDCs to PDC and 

UC (11, 103-106).  

Murugan AK and Xing M reported two novel gain-of-

function mutations of the ALK gene in 11% of UCs but no 

mutations in WDCs (107). Combination of PI3K/Akt genetic 

alterations (PTEN, RAS, ALK) with a BRAF mutation has been 

shown to be present in more aggressive thyroid tumors such as UC, 

and genetic or epigenetic alterations that activate both MAPK and 

PI3K/Akt pathways have been shown to be present in most cases 

of UC (42, 75, 108, 109). Other genes and pathways important for 

the development of PDC and UC may include the LRP1B gene 

located at 2q21, a susceptibility locus for familial non-medullary 

thyroid carcinomas (110). Hypermethylation of many tumor 

suppressor genes and multiple allelic losses, which may be linked 

to the inactivation of tumor suppressor genes, have been reported 

in thyroid carcinomas with poor outcome (30-32, 108, 110-121). 

 

3. Molecular Changes in the Progression of Thyroid 

Carcinomas 
 

The progression of thyroid carcinomas after initiation and 

promotion involves complex genetic and epigenetic alterations and 

mutations, and the epigenetic alterations in PDC and UC are far 

from being completely clarified (110-119). Growth factors (FGF, 

FGFR, MET, EGFR and VGEF) involved in the PI3K-Akt-mTOR 

pathway have been reported to have an important role in tumor 

development and progression in thyroid follicular cell 

carcinogenesis (15, 27, 33, 42, 109, 119-127).  Liu et al. found 

copy number gains in EGFR, PDGFR (α and β), VEGFR1, 

VGEFR2, KIT, MET, PIK3 (a and b) and PDK1 genes, which may 

play important roles in the tumor progression to UC (42). Cell 

cycle regulators such as retinoblastoma (Rb), p21, p27 and TP53 

also play important roles in the progression of thyroid 

carcinogenesis (49, 100, 126, 127). Adhesion molecules (β-catenin 

and E-cadherin) induce signal transduction through the Wnt signal 

pathway. Decreased E-cadherin expression is often found in UC, 

which activates β-catenin transcription activity by increasing the 

pool of β-catenin to migrate to the nucleus. Fibronectin is another 

adhesion molecule involved in the progression of thyroid 

carcinoma and the up-regulation of fibronectin has been 

demonstrated in thyroid carcinomas (33, 128).  

 

4. Thyroid Carcinomas with Metastasis 
 

Metastatic disease is the most common and important 

immediate cause of death in patients with thyroid carcinomas, 

either WDC or UC (21, 36, 44, 94, 126, 127).  From the multistep 

carcinogenesis theory, FTC with metastasis should have some 

additional genetic alterations compared with those without 

metastasis, and this should also be the case for PTC. These genetic 

events in either PTC or FTC are far from being completely 

clarified. N-RAS codon 61 mutation has been reported to be an 



Kakudo M et al. Molecular genetics of thyroid tumors, JBCM 2015, 4(1):13-21 
 
 

- 16 - 

 

important predictive genetic alteration for distant metastasis in 

PTC (128) and FTC (49, 50, 54, 55). However, these genetic 

changes are observed in cases without invasion or metastasis, and 

the genetic alterations that specifically linked to invasion and 

metastasis have not been fully elucidated in thyroid carcinomas. 

Many studies have postulated that accumulation of the genetic and 

epigenetic alterations rather than a single genetic event are 

responsible for tumor progression from non-invasive to invasive or 

from non-metastasizing to metastasizing (15). A common 

hypermethylation of hMLH1 (DNA repair gene) has been reported 

to be associated with lymph node metastasis in PTC with BRAF 

mutation (113). BRAF(V600E) mutation has been reported to 

promote the progression and aggressiveness of PTC by down-

regulation of tumor suppressor genes and up-regulation of cancer-

promoting molecules (VEGF, matrix metalloproteinases, nuclear 

transcription factor kappa B and c-met) (112). VEGF-D has been 

reported to play an important role in lymph node metastasis via 

lymphangiogenesis in PTC, and Nakamura Y et al. showed that up-

regulation of VEGF-D expression by nitric oxide in a cultured PTC 

cell line and the high level of nitrotyrosine (a biomarker for 

peroxynitrate formation from nitric oxide) immune expression was 

significantly correlated with lymph node metastasis (121, 129). 

Zuo M et al. showed that S100A4 was one of the overexpressed 

genes in a human thyroid carcinoma clone with a high incidence of 

lung metastasis using microarray analysis of gene expression 

profiling in their animal transplantation model (130). Zuo M et al. 

further reported a significantly higher level of S100A4 transcript in 

metastatic tumors than in the primary tumors (131). There are 

several genes (Nm23-H1, KiSS-1, RCAN1 and KAI1) that act as 

suppressors in tumor metastasis, and Phay JE et al. concluded that 

the loss of expression or function of such metastasis suppressor 

genes may play an important role in the development of metastasis 

(15). Since distant metastasis is one of the most important 

prognostic factors in thyroid carcinomas, identification of those 

genetic and epigenetic events could reveal new molecular targets 

for treating advanced thyroid carcinomas (126, 127). 

 

 
 
Figure 1: Thyroid neoplasia and multistep carcinogenesis theory.  

PTC lineage: 1: unknown, 2: unknown, 3: RET rearrangement or BRAF 

mutation, 4: unknown, 5: cyclin D1 overexpression and p27 down 
regulation, 6: TP53, PTEN and CTNNB1 mutation, 7: TP53, PTEN, ALK, 

PIK3CA, LRP1B and CTNNB1 mutation. 

FTC lineage: 1: unknown, 2: RAS mutation or PPARG rearrangement, 3: 

RAS mutation or PPARG rearrangement, 4: RAS mutation or PPARG 

rearrangement, 5: N-RAS codon 61 mutation, 6: TP53, PTEN and CTNNB1 

mutation, 7: TP53, PTEN, ALK, PIK3CA, LRP1B and CTNNB1 mutation. 

 

5. Multistep Carcinogenesis Theory 
 

A simplified model of the multistep carcinogenesis theory is 

shown in Figure 1 and the known genetic changes of thyroid 

carcinomas discussed in the present review are incorporated into 

the figure legends (Fig. 1).  Thyroid tumors develop as a result of 

the sequential accumulation of genetic and epigenetic alterations 

involved in the control of cell proliferation, cell differentiation or 

cell death, according to the multistep carcinogenesis theory.  

Additional epigenetic alterations also superimpose on those genetic 

changes in this model (15, 16, 109-117). One of the difficulties in 

this model is the lack of a clear cut separation of all histological 

types of thyroid carcinomas into corresponding tumor stages 

(stages 0, I, II, III and IV, or early non-invasive neoplasm, invasive 

carcinoma confined to thyroid gland, invasive carcinoma with 

local metastasis and invasive carcinoma with distant metastasis).  

This is because the age of patients is an important factor in the 

staging of thyroid carcinomas in most clinical guidelines and all 

patients younger than 45 years old are classified into stage I 

regardless of invasion and metastasis, and all UC patients are 

classified into stage IV even without invasion and metastasis (21, 

36, 132). As a result, most of the literature on thyroid 

carcinogenesis handled thyroid carcinomas in histologic groups, 

such as PTC group, FTC group, PDC group and UC group, rather 

than the stage of tumors. Therefore, in this review, multistep 

theory and related genetic alterations are explained separately in 

the PTC lineage and the FTC lineage in the figure legends (Fig. 1). 

Other problems for understanding thyroid carcinogenesis are 1) so-

called mutation-negative thyroid carcinomas (about one-third of 

PTC and FTC could not be explained by known genetic mutations) 

and 2) TP53 mutation is restricted in PDC and UC as a late genetic 

event in thyroid carcinogenesis, in contrast to the TP53 mutation in 

colorectal cancer (it occurs at an early phase of progression from 

adenoma to carcinoma in colorectal carcinoma) (4-6, 11). There 

are still many unanswered questions in this multistep theory when 

it is applied to thyroid follicular cell carcinogenesis.  

 

6. A Missing Link in Multistep Carcinogenesis 
 

There are several points that do not fit the multistep 

carcinogenesis theory in thyroid follicular cell neoplasms, and they 

are discussed in detail by Takano et al. elsewhere in this special 

issue of the Journal of Basic & Clinical Medicine (3). Another 

problem in explaining thyroid neoplasms using the multistep 

carcinogenesis model is a lack of known precursor lesions of 

thyroid carcinomas between normal follicular cells and early 

WDCs, a missing link in the multistep carcinogenesis of thyroid 

follicular cell carcinogenesis. Although FA is described as a 

candidate precursor lesion for thyroid carcinomas in many reviews 

and textbooks, prophylactic surgery is not recommended for 

patients with FA owing to infrequent progression from benign FA 

to malignant WDC (7, 8, 10, 13-16, 21, 51, 132-137). Furthermore, 

from many studies on how to separate malignant lesions (FTC and 

PTC) from FA using genetic markers, they act as if they are 

distinct lesions rather than a lesion with genetic continuity (134-

143). In the PTC chapter of WHO blue book, it is explained that 

there is no known precursor lesion for PTC, and in the FTC 

chapter, it is stated that no definite precursor lesions of FTC are 

known (36). The possible precursor lesions of thyroid carcinomas, 

such as small papillary carcinoma and borderline lesions between 

normal follicular cells and WDCs including FA have been 

reviewed elsewhere (144-146). 
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